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APPLICATION OF TRANSONIC SIMHARITY

By Adolf Busemann

SUMMARY

From a review of the different similarity approaches to compressi-
ble potential flow, the meaning and limitations of transonic similarity
are traced back to their origin. Although the main text deals with the
quasi two-dimensional flow, special suggestions for the case of axi-
symmetrical boties are added in an appendix.

INTRODUCTION

As long as similarity is used as a sideline of theory, its Imita-
tions may not be exceeded except for exploratory purposes. As a tool
of experimental research, similarity may more 13kely vary between too
nsrrow and too broad applications, or it may become fixed to a standard
form until its generality is rediscovered from time to time. It is not
so much the literature about similarity as the comprehensive guides that
seem to be lac~ng. There is, of course, reason for this deficiency,
since similarity, though based on a very stiple principle of classical
mathematics, penetrates progressively so many different.fields in its
various applications that the difficulty of saying enough about it is
inferior only to the difficulty of adiiingany%hing new to it. In spite
of this difficulty, this paper intends to summarize important points of
the back~ound for transonic similarity in order to stabilize variation
of opinion concerning it$ applications. The discussion is presented in
three parts: The first deals with the similarity routine, the second
&Lscusses the adequate differential equation, and the tmd gives the
resulting hints for a proper application.

SYMBOLS

A aspect ratio

c(x) or c center-line deviation; prime with this symtml inticates
differentiationwith respect to x
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co

cc

cD

cL

cm

CN

CP

CR

Cx

M

r

P

P.

Pm

R(x) or R

%

u

v

X)Y)Z

a

b

7

A

maximum center-line deviation

chord-force coefficient

drag coefficient

13f% coefficient

pitching-moment coefficient

normal-force coefficient

pressure coefficient

resultant-force coefficient

longitudinal-forcecoefficient

Wch number

distance from axis of revolution

local static pressure
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static pressure at

static pressure of
i

ratius; prime with
with respect to

maxim radius

velocity

specific volume

space coordinates

angle of attack

meridian angle

sta~ation point

undisturbed stream

this symbol indicates differentiation
x

ratio of specific heats

sweep angle
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P density

T thickness ratio

9 disturbancee velocity potential divided by undisturbed stream
velocity (dimension, length)

SIMILARITY ROUTINE
A

The similarity routine in physics is called dimensional anal~is
and is backed by the whole philosophy of conceiving &Lmensions. The
mathematical application of similarity based on any chosen differential
equation is more flexible but is, on the other hand, more problematic,
since the arbitrary element used in cutting and trying a differential
equation does not keep the results within natural limits. The basic
idea is always the same: All the given and UK&Lown variables concerned
are changed in scale with no other restriction than that of leaving
intact the underlyhg physicsl phenomena or the selected differential
equation. Every free change in scale is equivalent to one degree of
freedom of the similarity transfo~tion or one more branch for the
similarity fsmilies. The number of de~ees of freedom is therefore the
number of variables in the differential equation less the mxnber of
correlations which must be watched in order to leave the laws of physics
or the selected differential equation intact. Once it is discovered
that every additional term of the differential equation cuts off one
branch of the similarity families, a race for the shortest differential
equation suitable to express a limited class of interesting phenomena
is the natural consequence. Any practical computation has, of course,
the same benefits of a shorter equation but has the advantage of allowing
tentative negligence of terms to be checked during the calculation itself.

The compressible potential flow in three-dimensional space, if
expressed by the disturbance potential of a parallel flow and for a fluid
satisfying the perfect-gas laws, has 20 terms in the general differential
equation formed out of 6 variables: the Mach number M of the basic
flow, the specific-heat ratio y, the space coor&Lnates X,Y,Z, and the
disturbance potential q; thus,
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l-(y-l)M%px_z=a2q# 7-l&y2

2 1-+&zz -
2

2M%W(9Y+W&)- =f’%xz(,=+,X,2)- 2M%,Z,$Z= o (1)

Because the physical dimensions are correct, the clifferential equa-
tion (1) possesses one degree of freedom for all potential flows - the
geometrically similar flow (same factor for q, x, y, snd z with
unchanged M snd y). Before there is any hope of getting nmre fsmilies
of similsr flows, the number of ter&s has to be considerably reduced.
The &Lsturbancepotential has been introduced in order to reduce the
class of applications to small-disturbanceflows. If that is done to
the extreme, the three first-order terms in p would be the only ones
to consider. An improved accuracy requires’inclusion of all five second-
order terms together. The @np from three to eight terms goes beyond
the power of the similsrity for six variables. It is, however, not the
concern of the similarity routine to justify any amputated differential
equation. In order to show how the routine is carried out, the basic
differential equation may be the so-called transonic differential equa-
tion containing all first-order terms and a favorite second-order term

( $)~=1- - (7 + l)fi~x + 9D

Justification is contained in the next section.

+qzz=o
#

(2)

The mmber of participating variables is still six and the number
of terms in the trsnsonic differential equation is four, equivalent to
three ratios of successive terms. If all the ratios are essentially
different, the original six free factors are thus reduced to only three
independent factors on account of the three ratios that must remain
unchsnged. Combinations of the variable$, which are independent of the
scale changes of the single variables, are called “invariant” of the
similarity transformation. A set of necessary invariant can be formed
by the ratios of successive terms of the differential equation (2)
(taking operations according to scale values) as follows:

-————- . —..
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(7 + 1)/+9

(3)

The indicated form depends upon the arrangement of the terms in
the differential equation. The commutative freedom of the terms is,
however, no source of new invariant since the same set of invsriants
can be combined in innumerableways into,equivalent invarisnts which
are constant as long as the first three are kept constant. This free-
dom of associations is a necessary part of the routine. Actually, it
is one of the nmst valuable properties for general applications, though
it is usually reducedby convention if applied to
problems. Such more conventional invariantsl are
combinations of the original three:

(1- I&z=
X2

( M2)3Z21-

inv.

= inv.

(1+ 7)%V 1
a special class of
the following simple

(4)

After the freedom of the similarity transformation, based on the
differential equation, is found to be satisfactory, the next step is to
express the variables of the dd.fferentialequation by the given snd
unknown quantities on the boundaries. It may happen that the boundary
conditions of the original solution transform under the remaining

lBecause th’eproper range of the transonic term is close to M = 1
only, M in any power as a factor may be dropped and 1 - & may
equal 2(1 - M) without any discussion.

-—.—.. —.-. — --— — —---— ----
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freedom in a manner that the resulting new solutions become impractical
in part or altogether. The compressible flow in three dimensions is an
exsmple. The zero flow velocity normal to the body surface is not auto-
matically conserved, and only for quasi two-dimensionalbodies or for
bodies of revolution with angle of attack is it simple to find always a
new body surface in the neighborhood of the old one without sacrificing
one degree of freedom. (See appendix A.) In the quasi two-dimensional
case the body has the coordinates x, y, Z with Z(x,y) defined by
the surface requirement

or

(5)

(6)

The coordinate for smalJ.thicknesses Z enters the thickness ratio T
for the similar body and, in like mannery the angle of attack a; whereas -
the aspect ratio A or the sweep angle A connects the actual space
dimensions y and x. (An elevated control surface, however, changes
with Z in thickness and angle of attack but with z in the position
above the main wing.) If the Mach number M of the basic psrallel flow
and the specific-heat ratio 7 of the gas are included, the given quan-
tities enter the “@ven invariant” as follows:

(1 4f2)3

(7 + 1)2M4T2

1

A(l -
#~ 1/2

J

or in any desired combinations, as

A(7 L 1)113$/3Td3

(7)

(8)

me unknown quantities create less trouble with respect to their
number than the given quantities, since they have to be taken one at a
time. In flow problems with given body shapes and angles, the unknown
quantities are alxiostexclusively pressures or pressure coefficients

..

—
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snd integrals of them. The most important ones belong to three classes
of different powers in the thickness ratio:

IEt class: *

.

P-Pm
Cp = - Px

$dJ2

(9)

Sd CkSS:
“

Their invarisnts
representative:

C1(7 + m?

l-l? ‘r

2d Ch3S :

.

(lo)

(u)

(12)

<
can be expressed as follows for a first-class

c~(l - %)1’2 cp(y + 1)%
‘r ~ ‘d ‘0 ‘orth (13)

T

and, correspondingly, for the representatives of the other classes:

Cp
—=
CIT 1hlv.

inv.

(14)

The result of the similarity is simply that, if the problem has a
unique solution, the unknown invariant stays the same as long as all the
given invarisnts are kept the same. All members of one similarity fsmily
have identical values of corresponding invariant, given and *own ones,
including all possible combinations of them.

___ .— .._ ...— . . . . . . _._. ..--—. -—-——— —— ——— .-— ..—
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There is a simpler way of expressing this ssme idea, which is the
representationby symbolic functions, where the lmown and unknown
invarisnts enter as parameters. The unknown invsriant is generally
split into the actual miknow-nquantity on the left-hand side and the
other factors on the right-hand side in front of the symbolic function;
that is,

or -

~2/3
Cp =

(7 + U
l/3M2/3

02’

Cp’tizh

1(1- ~2 )3
‘g
(7 + 1)%4%

—

A(7 1+ ~) d3$/3Tv3 (M+l) (16)

(M~O or 7+-1) (17)

h this form there is the same freedom of association in the presented
parameters. The first form, for instance, is convenient for subsonic
flow; t~e second form is shaped for convenience at Mach number 1; and
the third form is convenient for the case 7 . -1.

Some special cases may ’illustratethe meaning of those changes.
The incompressible result can be easily obtained from equation (17) by
letting M equal zero:

CP = T h(O,A) = T H(A) (18)

If the transonic term is considered to be unimportant, a choice of Y
equal to -1 is going to cancel it. But before the elimination is
successful all former associations have to be reversed until only one
invariant contains (7 + 1); thus, equation (17) is again preferable
to equation (16):

.

———— -.
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= ddil(’~) (19)

After the transonic term ~s canceled, some cases survive an additional
cancellation of the term containing (1 - l@’),if this factor is attached
only to one invariant, thus

It results that
tunnel diameter

Cp = TA X constant

= a cot A x Constant (20)

some finite aspect ratio or sweep angle or finite wind-
and a finite thickness ratio or angle of attack are

necessary to express the unknown quantities with the given quantities.
If only the transonic term is canceled, Prandtl’s idea of keeping the
boundary-layer development similar to an incompressible case gets the
necessary freedom at subsonic speeds. By requiring c’ to be invariant

for boundary-layer similarity, the symbolic functions show that the

thickness ratio 7 must be proportional to fi2 insi~~cases:

Cp = inv. (21)

if

= inv.

Vti

snd

Following this rule allows predictions to be made about the separation
tendencies since both potential”f~ow and boundary layer are kept
similar.

.

,

—



ADEQUATE DIFFERENTIAL EQUATION
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For the application of the similarity rules to experiments the
selection of the underlying differential equation has to be sound. The
preference of the lower orders of q is based on the small-disturbance
theory, though some doubts about practical thickness ratios and stagna-
tion regions are expressed from time to time. The selection of a
convenient second-order term in preference to its four competitors of
the same level requires much more justification. The background is
the following: The first-order terms guarantee an existing solution
of regular type as long as they are used at subsonic speeds. At sonic
velocity the first term disappears and the two remaining terms resemble
an incompressible flow in two dimensions

(22)

This result is very simple and correct, since the stresmtubes at sonic
speed have only a second-order change of cross section with respect to
Pressure change6. (For analytical solution, see appendfx B.) The main
problem is to fit the streamtubes around obstacles regardless of”the
pressure (fig. 1). The incompressiblemedium is representedby the
cross sections of the streamtubes. If any trouble is encounteredby
trying to fit these stresmtubes around given bodies while measuring the
cross section perpendicular to the x-sxis, a thoughtful pipefittermay
try, on second thought, to measure the true cross section perpendicular
to the tube sxis. This,alternative problem is identical with the com-
plete 15-term sonic differential equation of a gas with a straight com-
pression law expressed in coordinates of pressure against volume, called
the gas with y = -1 among the perfect gases (fig. 2). The actual
difference between both stresmtube-fittingproblems is visible but it
does not have the significant result of saving flow problems from degen-
eration. Figures s(a) and s(b) show the two-dimensional flow in the
linearized and the complete 7 . -1 cases; figures L(a) and L(b) com-
pare the second case to the.corres~onding axisymmetrical flow, the
potential lines being straight in figure L(a) and changed to catensrles
in figure ~(b). In all cases the flow has to be terminatedby a jet
boundary before the pressure differences grow to infinity, though the
axisymmetrical flow permits much larger jets at equal thickness ratios
thsn the two-dimensionalbody. In three-dimensional.problems of plan
forms at angles of attack, pressure differences sre not quite so often
degenerating ad determine finite total Ufts or even finite lift
distributions.

.

The degeneration for all bodies of finite length with finite thick-
nesses at sonic speeds indicates clearly that the general problem is
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beyond the realm of the
keep the solutions from
the next ones to take.

two remaining
degenerating,

SL

first-order terms.” In order to
the five second-order terms sre

Four of the second-order tern” combined with
nine third-order terms were included in the sonic solutions for the gas
with y = -1 and did not save them from degeneration. The only second-
order term having the crucial factor 7 + 1 indicating the curvature
of the compression law is, therefore, the most probable one to bring
about changes. Nevertheless, its preference requires some better justi-
fication than probability to succeed. Since the only task of the addi-
tional term is to avoid a known type of degeneration of the linearized
equation, the structure of the flow field under consideration is very
special. Strong gradients occur in the x-direction and comparatively
smaller ones ‘inthe two other directions, y and Z. The quintuplet
of second-order terms

-(7 + l)M%~x

-(7 - l)M%V!X

-(7 - l)M%zzqx

-2M%#y

-&xzvz

(23)

can therefore be distinguished by factors above any finite limit, so
that the one with all three differentiations in the x-direction is fsr
superior to all the others, which have only one differentiation in
x-direction and the remaining two in other directions. It can be shown

that in a properly limited thickness range the predominance of the first
term within the whole quintuplet of second-order terms can be made large?
than any desired factor. In this situation the so-called transonic
differential equation is the product of theoretical reasoning alone.

APPHCATION

By a combination of the information’given about the similarity
routine and the justification of the underlying differential equation,
it follows that the transonic term should onlybe used when the problem
forces use of this step. This result means that one has to learn at

-... ———..——— . . . ——z—.—c. _____ — —__—.— —
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those questions which can be answered without the second-order
the trsnsonic te?.mis necessary, the thickness or the angle
enters the results with peculisr fractional powers. Transonic

similarity only correlates as one family those conditions that are
connected by the almost vertical structural lines indicated, for con-
venience, between 4- and 6-Percent thichess in figure .5. Similarity
is concerned only with potential flow of given contours composed by the
solid body including perhaps a certain type of separation. Chsnges in ‘
separation make the similarity inapplicable,but there may be two
favorable classes: .ohewith negligible separation and a second where the
transonic pressure discontinuities locate the boundary-layer separation
unalterably. A connection between sepsration points and discontinuities
has a known analogy at sharp corners in incompressible flow. The tran-
sonic term cancels the second degree of freedom which enabled Prqndt1
to keep the potential flow and the boundary-layer development similar
at the same time in the subsonic and incompressible regions.

CONCLUDING REMARm

All transonic problems can be basically understood by the addition
of just one second-ofier term in cases where the linearized approach
fails. The idea of the additional term is not to improve the accuracy
of existing 13nesrized results but to keep the linearized results from
degenerating. Adding this term as the last resort in the similarity
approach shrinks the freedom to thiclmess families with clifferent
boundary-layer development. An experimental check is not easily possiblej
sinee below about l-percent thiclmess the experimental equipment has to
be beyond the customary accuracy and above about 6-percent thicknesB
the trsnsonic term is not sufficient. The original 5/3 power of the drag
coefficient with thickness has to be changed sooner or later to a first-
power law because of the limited positive and negative pressures at
sonic speed. There is, however, a very good theoretical reason for taking
trsnsontc similarity as granted within the proper Ilmits and as a mesns
of extrapolationwith taution toward larger thicknesses. As soon as
the M.nearized theory is able to work reasonably, the trausonic approach
would be unwise and unjustified. At that time the possibility of
including the bounda~-layer development in the similarity routine is
present; the peculiar powers of the thiclmess or angle of attack dis-
appesr; and the emphasis can be placed on the proper variables.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics “

Langley Field, Va., February X2, 1952
.

.
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APPENDIX A

BOUNDARY CONDITIONS

When the differential equation deals with potentials but the
boundary conditions are streamlines, it cannot always be expected that
similar potential fields fit to similar boundary conditions. For
instance the two-dimensional flow may stretch the potential field with
Mach number but shrink the body thictiess perpendicular to the main
flow direction. The observable pressures in such cases on the surface
of the bodies shift relative to the potential field, but the pressure
changes at small disturbance bodies due to these small shifts are negli-
gible in two-dimensional cases, snd the pressures maybe called the
pressures at the middle plane of the thin wing. In three-dimensional
flow such an approximation is not generally permissible as may be demon-
strated for the slender body with circulsr sections.

If a body is given by the radii of its circular sections R(x)
and a center line c(x) = z, the potential distribution in its neighbor-
hood maybe srranged according to the linearized or psrabolic differen-
tial equation at sonic speeds of appendix B. This potential requires
just one more term than the proper axisymmetrical solution (equation (~))
because of the yawed or curved center line C(X) and is Writtm

. v~(x,y,z) =Fo(x) ‘~’ log # + (Z - C)2 - C’# z - c (Al)
y2 + (z - C)2

Gradients in the y- and z- directions are

2y(z - c)
Ty = RR’ Y

y2+(z .-c)~+ FR2p+(z-c)q2

9Z = RR’ ,2 (Z- C)2-Y2

Y2+Z(::C)2+CR [#+(z-c)5J2

(A2)

(A3)

-— —..— — —.-——— .———---- _ . . ..— — .—-. —-. -.-— ——--—
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These gradients add to the radial velocity

Y
-+C?z

~y2i- (z - .)2

NACA TN 2687
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with the following factors:

z-c

~y2 + (z - C)2

RR’ . C’R2(Z - C)
= +

vy2 + (z - C)2 P +(z -73’2

.

(A4)

This expression shows that the second and third terms of equation (Al)
take care of the growth in cross section R’ and the slope of the
center line c’ as required for a solid body contour. The first term
does not enter the boundary conditions nor does the arbitrary constant
of the logarithm. Both these free elements are connected, since FO(x)
can be combined with any product RR’ x Constant. The y and- z --c
values in the logarithm may, therefore, be considered as expressed in
the proper scale for the chosen similarity. If that is done, the ratios ,
of the three terms should be invsriant for corresponding points. It
is easy to see that the center-line deviation c has to follow y
and Z in their scales and that the first term in equation (Al) repre-
sents one of the symbolic functions (equations (15) to (1’7)),if written
as follows:

R02 ( ) %2%(x) == fo :, invariant
(

invarisnts
or~go:’ )

(A5)

~ snd X. being the maximum radius and lengthof the circular body,
respectively. The new function fo with only one geometrical variable
near the axis stays the same as long as the similarity is conserved.
It enters the pressure distribution at the body surface, but it cannot
create lift. The invariant form of the second term depends on the
chosen differential equation for the complete flow. If the linearized
flow outside the transonic range is preferred, the potential reads

.

———.—.— -.
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T(X,Y,Z) =

In the transonic

fi2 ~.
~

W ‘m’ ‘“g--

.’$ ‘“c

#+(z:c)2

range it is more appropriate to use

(A6)

9(X,Y, Z) =

Another slight

.’$ ‘-c (A7)

y’2+(z-c)2

difficulty for circular bodies is caused by the difference
in magnitud= of the three components of the potential gra~ent near the
body. The sxial gradient is so small that the squares of the crosswise
gradients contribute noticeably to’the first order of the presstie
changes (in the same msnner as the time and space derivatives enter the
incompressiblenonsteady Bernoulli equation):

CP
. -@x - pyp - %2

On the body surface the simplification maybe used

y.Rsin5

z -c = R’cos 8
)

(M)

With these notations the pressure coefficient outside the transonic
range can be expressed by the symbolic function f and some extra
terms:

(A9)

- . . .—._ .—.—.— _—_— ..—— — ——— . ——. –—-—
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.

2(RR” + R’2)
log R= -,,2 2

%
-c’+

(2RC” + 4R’C’)COS 5 + 2C’2COS 25 (A1O)

In the transonic rsnge the corresponding function g is connected with
slightly adjusted extra terms:

%2Cp==g%
x

X5’

1-

%2(1 - M’2) C02R02% + 1)

%’R.%(7 + 1) ‘

RRoM~ 7 + 1
2(RR” + R’2) log R,2 _ =,2+

X.2 -

(~C” + 4R’c’)cos b + 2C’2COS 25 (All)

It is obvious that the extra terms can onlybe used as long as the
.sec.ndderivatives of R and c are limited wherever R ‘is not zero.
Equations (A1O) snd (All), therefore, give proper intonation only if
R is zero on both ends of a body of finite length or the supersonic
chsracter of the flow cancels upstream effects. If, however, a stream-
lined body, having limited seco~d-order
the extra terms create neither lift nor

L=q
1[

Cpdxdy=-

D=q
IJ

cpdy~=q
JJ

%2
~gdydz

‘o

derivatives-throughout,is chosen,
drag but moment:

[1

%
2Yrq C’R2 o (A12)

[
+ m 2R2R’2

Const
z%

log — + R2C’
R Io

(JU3)

.

. —— ..—.—. —.
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(A14)

Since the first term creates no lift either, the lift snd extra drag are
features of unstreamlined bodies with blunt bases or other disconti-
nuities. The temn of the symbolic functions containing the maximum
center deviation co may be of negligible effect and therefore omitted.

#

—.. — . .— -— ——— .. __——_— . .
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APPENDIX B

SOLUTIONS OF THE PARABOUC EQU&TION

The sonic differential equation in x,y,z

Qyy+9zz’o (Bl)

is of the parabolic type; there is no direct relation to changes in
the main flow Urection x. For a real variable x and a complex vari-
able y + iz and its conjugate y - iz, the general solution maybe
written

9(X,Y,Z) = fl(x, Y+ iz) + f&, Y- iz)

.
[ 1R.P. f(x, y+ iZ) (B2)

The notation R.P. (...) is usedto identify the real part of a complex
number. If this general solution is specialized to two-dimensional
flow in x and y, only two powers of the complex number y + iz are
functions not containing z in the real part; they are (y+ iz)”
and (y + iZ)l. This result leads to the two-tiensional solution:

[ 1dx,Y) =R.p. fo(x) (Y+ iz)” + fl(x) (Y+ iz)l

= fo(x) + fl(x) Y (B3)

If an sxisymmetrical flow is wanted, there are again two functions
whose real parts have the proper combination y2 + 22 . @. They are
(y + iZ)O and 10g(y + iZ). The corresponding solution is

Q(x,r) [ 1
=R.P. FO(X) (y+ iZ)O + F1(x) log(y+ iZ)

= FO(X) + Fl(x) log r (B4)

—.
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It is obvious that neither of these solutions stays finite between the
lmdy at small values of y or r and inftiity. ‘I’heyare useful if
applied to a thin or slender body (for the geometry of the streamlines)
ti a finite jet with boundaries at yj or r~ (for the pressure

distribution) as demonstrated in figures 3 and 4.
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Figure 1.- Sonic streamtubes.
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Figure 2.- Compression law.
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I
1 t

(a) Linearized. (b) For 7 = -1.

Figure 3.- Two-dimensional sonic flow.
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Figure 4.- Sonic flow.
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(1-M2)3
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Figure 5.- The transonic term.
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